Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Pharm ; 653: 123871, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38301810

RESUMO

Biotherapeutic PEGylation to prolong action of medications has gained popularity over the last decades. Various hydrophilic natural polymers have been developed to tackle the drawbacks of PEGylation, such as its accelerated blood clearance and non-biodegradability. Polypeptoides, such as polysarcosine (pSar), have been explored as hydrophilic substitutes for PEG. pSar has PEG-like physicochemical characteristics such as water solubility and no reported cytotoxicity and immunogenicity. This review discusses pSar derivatives, synthesis, characterization approaches, biomedical applications, in addition to the challenges and future perspectives of pSar based biomaterials as an alternative to PEG.


Assuntos
Peptídeos , Sarcosina , Sarcosina/análogos & derivados , Peptídeos/química , Sarcosina/química , Polímeros , Materiais Biocompatíveis , Polietilenoglicóis/química
2.
Drug Dev Ind Pharm ; 50(3): 274-283, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374658

RESUMO

OBJECTIVE: Apigenin and gallic acid are natural compounds that are useful as antioxidant, anti-inflammatory and anticancer agents, especially when used together in combination. Therefore, the development and validation of a simultaneous method of analysis for both compounds in pure form and when encapsulated in an advanced delivery system such as liposomes would be useful. METHODS: Analysis was performed using C18 column under isocratic conditions. The mobile phase was acetonitrile: water containing 0.2% orthophosphoric acid at a ratio of 67:33, flow rate 1 ml/min, and detection wavelength 334 nm for apigenin and 271 nm for gallic acid. RESULTS: The assay method was linear at the concentration range (5-600 µg/mL) with R2 of 1 for both drugs. The method was also shown to be precise and robust with RSD less than 2% with LOD (0.12, 0.1 µg/mL) and LOQ (4.14, 3.58 µg/mL) for apigenin and gallic acid respectively. The method was also applicable for the determination of the entrapment efficiency of both drugs when co-loaded in a nanoliposomal formulation. CONCLUSION: The described HPLC method was shown to be suitable, sensitive, and reproducible for the simultaneous identification and quantification of apigenin and gallic acid. The analytical results were accurate and precise, with good recovery, low limit of detection, and the chromatographic assay was accomplished in less than 3 min, suggesting the suitability of the method for routine analysis of both drugs in pharmaceutical formulations.


Assuntos
Apigenina , Ácido Gálico , Preparações Farmacêuticas , Cromatografia Líquida de Alta Pressão/métodos
3.
Drug Deliv Transl Res ; 14(5): 1338-1351, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37930630

RESUMO

Hepatocellular carcinoma (HCC) is a malignant tumor that affects many patients diagnosed with hepatic cell inflammation and liver cirrhosis. Targeted polymeric nanocapsules could facilitate the internalization and accumulation of anticancer drugs. Dual-targeted folic acid/lactobionic acid-poly lactic co-glycolic acid nanocapsules (NCs) were prepared and loaded with pterostilbene (PTN) and characterized for their physicochemical properties, as well as in vitro and in vivo anticancer activity. NCs displayed a size of 222 nm, zeta potential of - 16.5 mV, and sustained release for 48 h. The IC50 of PTN NCs (5.87 ± 0.8 µg/mL) was 20 times lower than unencapsulated PTN (121.26 ± 9.42 µg/mL) on HepG2 liver cancer cells owing to the enhanced cellular uptake of the former, as delineated by flow cytometry. In vivo study on HCC-induced animals delineated the superiority of the dual-targeted NCs over the unencapsulated PTN, which significantly reduced the liver markers ALT, AST, and ALP, as well as the tumor-related markers AFP and Bcl2, and elevated the anti-apoptotic marker caspase 3. Furthermore, the NCs significantly reduced the oxidative stress and exhibited almost comparable histological features to the normal group. Therefore, it can be concluded that the dual-ligated folic acid/lactobionic acid nanocapsules can be considered a promising potential treatment option for hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Dissacarídeos , Neoplasias Hepáticas , Nanocápsulas , Animais , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Nanocápsulas/química , Nanocápsulas/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Polímeros/uso terapêutico , Ácido Fólico , Linhagem Celular Tumoral
4.
Pharmaceutics ; 14(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36297632

RESUMO

This study reports a new protocol for the management of Hidradenitis Suppurativa (HS), depending on the synergistic photodynamic and photothermal effect of eosin yellow-gold-polypyrrole hybrid nanoparticles (E-G-Ppy NPs). E-G-Ppy NPs and gold-polypyrrole NPs (G-Ppy NPs) were synthesized, characterized, and formulated in topical hydrogels. Then, in vivo trans-epidermal permeation study, under both dark and white light-irradiation conditions, was done on albino mice. The E-G-Ppy hydrogel was then applied on a twenty-four years old female with recurrent axillary HS lesions pretreated with fractional CO2 laser. Thereafter, the treated lesions were irradiated sequentially, using an IPL system, in the visible (~550 nm) and NIR band (630-1100 nm) to activate the synthesized nanoparticles. Results showed that, upon application to mice skin, E-G-Ppy exhibited good tolerance and safety under dark conditions and induced degenerative changes into dermal layers after white-light activation, reflecting deep penetration. Photo-activation of E-G-Ppy hydrogel to a severe Hidradenitis Suppurativa case showed an improvement of 80% of the lesions according to average HS-LASI scores after 4 sessions with no recurrence during a follow-up period of six months. In summary, the dual photodynamic/photothermal activation of E-G-Ppy NPs can represent a promising modality for management of HS. Further expanded clinical studies may be needed.

5.
Expert Opin Drug Deliv ; 19(11): 1549-1560, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36287914

RESUMO

OBJECTIVES: Baicalin is a promising anticancer nutraceutical compound, but its application is hindered by its low water solubility and bioavailability, which can be remedied by its encapsulation in nanoparticles. METHODS: Lipid nanocapsules (LNCs) were developed to enhance baicalin delivery via intravenous and intranasal routes, and potentiate its therapeutic activity in treatment of glioma. RESULTS: LNCs displayed a particle size of 17.76 nm and sustained release of 74.36% after 24 h. The IC50 of baicalin LNCs (13 ± 5 µg/ml) was 60 times lower than free baicalin (780 ± 107 µg/ml) on human glioblastoma multiform cell line U87, with adequate cellular uptake as delineated by confocal laser microscopy. Both baicalin and LNCs induced cell cycle arrest at S and G2/M phases, with significant up-regulation in P21 gene, and decline in Nrf-2, HO-1 and VEGF gene expression. LNCs increased baicalin's bioavailability, either after intravenous (AUC0-24 h 10.94 ± 0.28 vs 3.53 ± 0.09 µg/ml*h), or intranasal administration (AUC0-24 h 6.26 ± 0.11 vs 3.17 ± 0.04 µg/ml*h). They also bypassed the blood brain barrier and achieved significantly higher brain delivery compared to free baicalin (drug targeting efficiency 160.73% vs 52.9%). CONCLUSION: Baicalin LNCs is a promising treatment modality for glioma, when administered through intravenous or intranasal routes.


Assuntos
Glioma , Nanocápsulas , Humanos , Nanocápsulas/uso terapêutico , Flavonoides/uso terapêutico , Flavonoides/farmacocinética , Glioma/tratamento farmacológico , Lipídeos
6.
Pharm Dev Technol ; 27(9): 925-941, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36168910

RESUMO

The effectiveness of cisplatin in cancer treatment renders its use vital to clinicians. However, the accompanying side effects as cachexia, emesis and liver damage necessitate the use of a dietary supplement which is capable of hindering such undesirable complications. The branched chain amino acids as well as glutamine and arginine have been proven to be effective nutritional co-adjuvant therapeutic agents. Furthermore, new pharmaceutical approaches encompass designing organ-targeted nanoformulations to increase the medicinal efficacy. Therefore, the aim of the present study was to investigate the beneficial effects of liver-targeted amino acids-loaded nanoliposomes in counteracting the adverse hematopoietic and hepatic complications associated with cisplatin. Results revealed the use of the combination of two nanoliposomal formulations (one loading leucine + isolecuine + valine, and the other loading glutamine and arginine) given orally at a dose of 200 mg/kg for twelve days was effective against cisplatin-induced toxicities represented by improvement in the complete blood picture parameters, decrease in the serum hepatic enzymes levels, amelioration of the hepatic oxidative stress and cellular energy imbalance along with reduction in the histopathological abnormalities. It can be concluded that amino acids loaded nanoliposomes could be considered a new strategy in preventing cisplatin's adverse effects.


Assuntos
Carcinoma Hepatocelular , Ácido Glicirretínico , Neoplasias Hepáticas , Humanos , Cisplatino , Aminoácidos , Glutamina , Arginina
7.
Int J Pharm ; 626: 122169, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36075523

RESUMO

Nanodiamonds (NDs) are among the most promising chemotherapy vectors, however, they tend to aggregate upon storage, or when exposed to mild changes in pH or ionic strength. Therefore, fabrication of dried NDs with minimal change in particle size is highly desirable. In this study, we have developed a dried powder form of NDs with controlled particle size to be eligible for pulmonary delivery, after screening different drying protectants for their effect on NDs particle size and surface charge. Results showed that the nanospray-drying process in the presence of mannitol prevented the aggregation of NDs. Nanospray-dried NDs microparticles exhibited an optimal aerodynamic size for pulmonary delivery, and the in vitro aerosol deposition testing showed that NDs-embedded mannitol microspheres could deliver more than half of the emitted fraction to the lower stage of the Twin impinger device; indicating high pulmonary delivery potential. Upon loading NDs with doxorubicin (NDX) prior to spray dryng, they were able to deliver 2.6 times more drug to A549 lung cancer cell line compared to the free drug. Pharmacokinetics study in rats showed that inhaled NDX microparticles could efficiently limit the biodistribution of the drug to the lungs, and minimize the drug fraction reaching the systemic circulation. To conclude, nanospray-dried NDs microparticles present a promising vehicle for the pulmonary delivery of chemotherapeutic agents for treatment of lung cancer.


Assuntos
Neoplasias Pulmonares , Nanodiamantes , Animais , Ratos , Administração por Inalação , Doxorrubicina , Neoplasias Pulmonares/tratamento farmacológico , Manitol , Microesferas , Tamanho da Partícula , Pós/uso terapêutico , Aerossóis e Gotículas Respiratórios , Distribuição Tecidual
8.
PLoS One ; 17(8): e0268176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35972968

RESUMO

BACKGROUND: The role of the long non-coding RNAs (lncRNAs) in the pathogenesis of systemic lupus erythematosus (SLE) is mostly unknown, despite increasing evidence that lncRNAs extensively participate in physiological and pathological conditions. AIM: To detect the level of lncRNA-Cox2, HOTAIR, IL-6, and MMP-9 in the serum of SLE patients and to correlate these levels with disease activity and patients' clinical and laboratory data to evaluate the value of these biomarkers for SLE diagnosis and assessment of disease activity. METHODS: Blood samples from 58 SLE patients, and 60 healthy controls (HCs) were used for detection of lncRNAs-Cox2 and HOTAIR expression levels by real-time polymerase chain reaction. Both IL-6 and MMP-9 serum levels were assayed by enzyme-linked immunosorbent assay. Lupus activity was assessed with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). RESULTS: The serum expression levels of lncRNA-Cox2 and HOTAIR were significantly up-regulated in SLE patients vs HCs (fold change [median (IQR) was 1.29(0.81-1.71, P<0.0001) and 2.68(0.95-3.67), P = 0.038) for lncRNA-Cox2 and HOTAIR, respectively. Serum levels of both IL-6 and MMP-9 were significantly high in SLE patients compared with HCs (P≤0.001 for each). The up-regulated lncRNA-Cox2 was positively associated with the presence of neurological manifestations in SLE patients (P = 0.007). Furthermore, HOTAIR expression level had significantly positive correlation with IL-6 (r = 0.578, P<0.0001), MMP-9 level (r = 0.762, P<0.0001), nephritis grades (r = 0.296, P = 0.024) and proteinuria (r = 0.287, P = 0.035). LncRNA-Cox2 showed sensitivity and specificity 72.4%, and 100.0% respectively. HOTAIR sensitivity was 60.3%, and specificity was 100.0%. By multiple logistic regression analysis, lncRNA-Cox2 and HOTAIR were found as SLE independent predictors. CONCLUSION: LncRNA-COX2 and HOTAIR can be used as new non-invasive biomarkers for the diagnosis of SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , RNA Longo não Codificante , Biomarcadores , Humanos , Interleucina-6/sangue , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , Metaloproteinase 9 da Matriz/sangue , RNA Longo não Codificante/genética
9.
Drug Deliv ; 29(1): 2469-2480, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35892291

RESUMO

Ischemic stroke accounts for about 87% of all strokes, causing long-term disability in adults, and is the second leading cause of death worldwide. In search of new therapeutic modalities, the use of neuroprotective agents loaded in nanocarriers to be delivered by noninvasive means (i.e. via intranasal route) became a popular approach. In the current study, melatonin (MEL) was loaded in lipidic nanocapsules (LNCs) prepared using the phase inversion method, and characterized in terms of size, polydispersity, zeta potential, in vitro drug release, viscosity, storage stability, and ex vivo permeation across sheep nasal mucosa. Moreover, MEL-LNCs were tested for efficacy in cerebral ischemia/reperfusion (I/R/) injury model through histopathological assessment, and analysis of oxidative stress markers, pro-inflammatory cytokines, and apoptotic markers. Results showed that LNCs exhibited particle size ranging from 18.26 to 109.8 nm, negative zeta potential, good storage stability, spherical morphology, and a burst release followed by a sustained release pattern. LNCs exhibited 10.35 folds higher permeation of MEL than the drug solution across sheep nasal mucosa. Post-ischemic intranasal administration of MEL-LNCs revealed lowering of oxidative stress manifested by a decrease in malondialdehyde levels, and elevation of glutathione and superoxide dismutase levels, lowering of the inflammatory markers tumor necrosis factor-α, NO, myeloperoxidase, and significant inhibition of Caspase-3 activity as an apoptotic marker. Western blot analysis delineated a recovery of protein expression Nrf-2 and HO-1 with downregulation in the parent inflammatory markers nuclear factor kappa B p65, inducible nitric oxide synthase, Bax, and Cytochrome C expressions, and upregulation of B-cell lymphoma-2 Bcl-2, hence promoting neuronal survival. This was supported by histological evidence, revealing significant restoration of hippocampal neurons. In light of the above, it can be concluded that MEL-LNCs could be a promising delivery system for nose to brain delivery for treatment of cerebral ischemia.


Assuntos
Isquemia Encefálica , Melatonina , Nanocápsulas , Animais , Encéfalo , Isquemia Encefálica/tratamento farmacológico , Isquemia/tratamento farmacológico , Lipídeos , Melatonina/farmacologia , Ovinos
10.
Expert Opin Drug Deliv ; 19(5): 611-622, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35538642

RESUMO

BACKGROUND: Lung cancer is a principal cause of death worldwide, and its treatment is very challenging. Nebulization offers a promising means of targeting drugs to their site of action in the lung. RESEARCH DESIGN AND METHODS: In the present study, nebulizable oil in water nanoemulsion formulations was co-loaded with naringin/celecoxib and tested for pulmonary administration by different nebulizer types. RESULTS: The translucent appearance of nanoemulsion formulations was revealed, with particle size (75-106 nm), zeta potential (-3.42 to -4.86 mV), and controlled in-vitro release profiles for both drugs. The nanoemulsions showed favorable stability profiles and superior cytotoxicity on A549 lung cancer cells. Aerosolization studies on the selected nanoemulsion formulation revealed its high stability during nebulization, with the generation of an aerosol of small volume median diameter and mass median aerodynamic diameter lower than 5 µm. Moreover, it demonstrated considerable safety and bioaccumulation in lung tissues, in addition to accumulation in the brain, liver, and bones, which are the main organs to which lung cancer metastasizes. CONCLUSIONS: Nanoemulsion proved to be a promising nebulizable system, which paves the way for treatment of pulmonary diseases other than lung cancer.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Celecoxib/uso terapêutico , Emulsões , Flavanonas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Tamanho da Partícula
11.
Drug Deliv ; 29(1): 1212-1231, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35403519

RESUMO

The increase in the production of melanin level inside the skin prompts a patient-inconvenient skin color disorder namely; melasma. This arouses the need to develop efficacious treatment modalities, among which are topical nano-delivery systems. This study aimed to formulate functionalized chitosan nanoparticles (CSNPs) in gel form for enhanced topical delivery of alpha-arbutin as a skin whitening agent to treat melasma. Ionic gelation method was employed to prepare α-arbutin-CSNPs utilizing a 24 full factorial design followed by In vitro, Ex vivo and clinical evaluation of the nano-dispersions and their gel forms. Results revealed that the obtained CSNPs were in the nanometer range with positive zeta potential, high entrapment efficiency, good stability characteristics and exhibited sustained release of α-arbutin over 24 h. Ex vivo deposition of CSNPs proved their superiority in accumulating the drug in deep skin layers with no transdermal delivery. DSC and FTIR studies revealed the successful amorphization of α-arbutin into the nanoparticulate system with no interaction between the drug and the carrier system. The comparative split-face clinical study revealed that α-arbutin loaded CSNPs hydrogels showed better therapeutic efficacy compared to the free drug hydrogel in melasma patients, as displayed by the decrease in: modified melasma area and severity index (mMASI) scores, epidermal melanin particle size surface area (MPSA) and the number of epidermal monoclonal mouse anti-melanoma antigen recognized by T cells-1 (MART-1) positive cells which proved that the aforementioned system is a promising modality for melasma treatment.


Assuntos
Quitosana , Melanose , Nanopartículas , Preparações Clareadoras de Pele , Animais , Arbutina , Humanos , Hidrogéis , Melaninas/uso terapêutico , Melanose/tratamento farmacológico , Camundongos , Preparações Clareadoras de Pele/uso terapêutico
12.
Life Sci ; 298: 120500, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35341825

RESUMO

AIMS: Ferulic acid is a polyphenolic compound with proven anticancer properties, but it suffers from low solubility and bioavailability. In the current work, polymeric and lipidic nanocapsules of ferulic acid were prepared, characterized, and tested on colorectal cancer (CRC) cell lines (HCT-116 and Caco2 cells), with mechanistic anticancer elucidation using flow cytometry. The selected NCs formulation was further tested in vivo on rats after inducing CRC using 1,2 dimethylhydrazine (DMH), followed by biochemical analysis, molecular and histological examinations. KEY FINDINGS: Results revealed that both polymeric and lipidic nanocapsules showed favorable properties, but the latter was smaller in size and presented higher cumulative percent released of FA. The lipidic nanocapsules displayed better anticancer activity than the drug on both cell lines; with apoptosis being the dominant cell death mode. The in vivo study revealed that ferulic acid lipid NCs exhibited significant antioxidant and anti-inflammatory activities. They also downregulated cyclin D1, IGF II, and VEGF, and autoregulated the apoptotic/anti-apoptotic gene BAX/Bcl-2; indicating their apoptotic and anti-angiogenic potential, which was further confirmed by histological examination. SIGNIFICANCE: Findings prove that the proposed ferulic acid lipid nanocapsules are an ideal system for treatment of CRC, and can serve as a preventive measure against metastasis.


Assuntos
Neoplasias Colorretais , Nanocápsulas , Animais , Células CACO-2 , Neoplasias Colorretais/tratamento farmacológico , Ácidos Cumáricos , Humanos , Lipídeos , Nanocápsulas/química , Ratos
13.
J Food Biochem ; 46(7): e14104, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35098560

RESUMO

Diabetes mellitus has been implicated in the exacerbation of cerebral ischemic injuries. Among the most promising therapeutic approaches is the combination of nutraceuticals and nanotechnology. Curcumin has been termed "the magic molecule", and it was proven to exert several therapeutic actions. Therefore, the aim of the presented work was to investigate the therapeutic effects of curcumin nanoemulsion (NC) administered orally on the middle cerebral artery occlusion and reperfusion (MCAO/Re)-induced cerebral damage in rats with streptozotocin-induced diabetes. The cerebral injury was induced in rats by MCAO/Re 6 weeks after single intraperitoneal STZ injection (50 mg/kg; i.p.). MCAO/Re diabetic rats were then treated with NC (50 and 100 mg/kg; bw; p.o.) for two consecutive weeks. The results of the present study showed that oral treatment of MCAO/Re diabetic rats with NC was associated with a marked attenuation of the neurological deficit score as well as the brain imbalance of the redox homeostasis. NC treatment was also associated with decline in the brain expression of tumor necrosis factor, interleukin-1ß, COX-2, cleaved caspase-3, and nuclear factor kappa B. In addition, the expression of glucose transporter 1 proteins upon treatment was restored. PRACTICAL APPLICATIONS: From all these results, it can be concluded that oral supplementation of curcumin nanoemulsion (NC) in diabetic rats reduced the brain injury via augmentation of the expression of glucose transporter 1, as well as its antioxidant and anti-inflammatory properties. Therefore, NC could be delineated as a promising treatment option for cerebral ischemia in diabetic patients.


Assuntos
Lesões Encefálicas , Curcumina , Diabetes Mellitus Experimental , Traumatismo por Reperfusão , Animais , Lesões Encefálicas/complicações , Lesões Encefálicas/tratamento farmacológico , Curcumina/farmacologia , Diabetes Mellitus Experimental/metabolismo , Transportador de Glucose Tipo 1 , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Ratos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
14.
Eur J Pharm Sci ; 171: 106119, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998905

RESUMO

Lung cancer is characterized by poor prognosis, and is considered a serious disease that causes a significant mortality. The available conventional chemotherapeutic agents suffer from several limitations; hence, new drug molecules are constantly being sought. In the current study, lipid nanovesicles (LNVs) were selected as a colloidal vehicle for encapsulation of the FDA-approved drug; rolapitant (RP), which is used particularly for the treatment of nausea and vomiting, but is repurposed for the treatment of lung cancer in the current work. RP was loaded into various LNVs (liposomes, ethosomes and transethosomes) using the thin film hydration method, and the LNVs were evaluated for particle size, zeta potential, entrapment efficiency (EE%), storage stability and surface morphology. Besides, the in-vitro drug release, in-vitro cytotoxicity on A549 lung cancer cells, nebulization performance using next generation impactor (NGI), and the in-vivo biodistribution behavior were evaluated. The selected ethosomal and transethosomal vesicles displayed a particle size less than 400 nm, a positive charge, and EE% exceeding 90% for RP, with a sustained release pattern over 15 days. The in-vivo biodistribution results proved the high lung deposition potential of RP-LNVs with a considerable safety. Besides, the developed RP-LNVs were able to reach the metastatic organs of lung cancer, hence they were proven promising as a possible treatment modality for lung cancer.


Assuntos
Lipossomos , Neoplasias Pulmonares , Administração Cutânea , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Tamanho da Partícula , Compostos de Espiro , Distribuição Tecidual
15.
Drug Des Devel Ther ; 15: 5011-5023, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938068

RESUMO

PURPOSE: Enhancement of the photodynamic/photothermal efficiency of two water-soluble dyes, rose bengal (RB) and eosin yellow (EY), via conjugation to a polymeric nano-system gold-polypyrrole nanoparticle (AuPpy NPs). METHODOLOGY: A multi-step synthesis method and an in situ one-pot synthesis method were used. Loading percentage, particle size, zeta potential, morphology, UV-Vis-NIR spectrophotometry and in vitro photothermal activity were measured. Then, both hybrid nanocomposites were examined for their cytotoxicity and photocytotoxicity on HepG2 cell line as a model for cancer cells. RESULTS: Dyes loaded in the traditional multi-step method did not exceed 9% w/w, while in the one-pot synthesis method they reached ~67% w/w and ~75% w/w for EY-AuPpy NPs and RB-AuPpy NPs, respectively. UV-Vis-NIR spectrophotometry showed that both nano-systems exhibited intense absorption in the NIR region. The mean size of the nanoparticles was ~31.5 nm (RB-AuPpy NPs) and ~33.6 nm (EY-AuPpy NPs) with zeta potential values of -26.5 mV and -33 mV, respectively. TEM imaging revealed the morphology of both hybrids, showing ultra-nano spherical-shaped gold cores in the case of RB-AuPpy NPs, and different shapes of larger gold cores in the case of EY-AuPpy NPs, both embedded in the polymer film. Conjugation to AuPpy was found to significantly reduce the dark cytotoxicity of both RB and EY, preserving the photocytotoxicity of EY and enhancing the photocytotoxicity of RB. CONCLUSION: Gold-polypyrrole nanoparticles represent an effective delivery system to improve the photodynamic and photothermal properties of RB and EY. The in situ one-pot synthesis method provided a means to greatly increase the loading capacity of AuPpy NPs. While both hybrid nanocomposites exhibited greatly diminished dark cytotoxicity, RB-AuPpy NPs showed significantly enhanced photocytotoxicity compared to the free dyes. This pattern enables the safe use of both dyes in high concentrations with sustained action, reducing dose frequency and side effects.


Assuntos
Amarelo de Eosina-(YS)/química , Ouro/química , Fármacos Fotossensibilizantes/síntese química , Pirróis/química , Rosa Bengala/química , Nanopartículas , Análise Espectral/métodos
16.
Pharm Dev Technol ; 26(10): 1136-1157, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34751091

RESUMO

Dermatological products constitute a big segment of the pharmaceutical market. From conventional products to more advanced ones, a wide variety of dosage forms have been developed till current date. A representative of the advanced delivery means is carrier-based systems, which can load large number of drugs for treatment of dermatological diseases, or simply for cosmeceutical purposes. To make them more favorable for topical delivery, further incorporation of these carriers in a topical vehicle, such as gels or creams is made. Therefore in this review article, an overview is compiled of the most commonly encountered novel carrier based topical delivery systems; namely lipid based (nanoemulsions, microemulsions, solid lipid nanoparticles [SLNs] and nanostructured lipid carriers [NLCs]), and vesicular carriers (non-deformable, such as liposomes, niosomes, emulsomes and cerosomes, and deformable, such as transfersomes, ethosomes, transethosomes, and penetration enhancer vesicles), with special emphasis on those loaded in a secondary gel vehicle. A special focus was made on the commonly encountered dermatological diseases, such as bacterial and fungal infections, psoriasis, dermatitis, eczema, vitiligo, oxidative damage, aging, alopecia, and skin cancer.


Assuntos
Portadores de Fármacos/química , Nanopartículas , Dermatopatias/tratamento farmacológico , Administração Cutânea , Humanos , Lipossomos , Pele/metabolismo , Absorção Cutânea
17.
Sci Rep ; 11(1): 20197, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642396

RESUMO

Skin cancer is one of the most dangerous diseases, leading to massive losses and high death rates worldwide. Topical delivery of nutraceuticals is considered a suitable approach for efficient and safe treatment of skin cancer. Nobiletin; a flavone occurring in citrus fruits has been reported to inhibit proliferation of carcinogenesis since 1990s, is a promising candidate in this regard. Nobiletin was loaded in various vesicular systems to improve its cytotoxicity against skin cancer. Vesicles were prepared using the thin film hydration method, and characterized for particle size, zeta potential, entrapment efficiency, TEM, ex-vivo skin deposition and physical stability. Nobiletin-loaded composite penetration enhancer vesicles (PEVs) and composite transfersomes exhibited particle size 126.70 ± 11.80 nm, 110.10 ± 0.90 nm, zeta potential + 6.10 ± 0.40 mV, + 9.80 ± 2.60 mV, entrapment efficiency 93.50% ± 3.60, 95.60% ± 1.50 and total skin deposition 95.30% ± 3.40, 100.00% ± 2.80, respectively. These formulations were selected for cytotoxicity study on epidermoid carcinoma cell line (A431). Nobiletin-loaded composite PEVs displayed the lowest IC50 value, thus was selected for the in vivo study, where it restored skin condition in DMBA induced skin carcinogenesis mice, as delineated by histological and immuno-histochemical analysis, biochemical assessment of skin oxidative stress biomarkers, in addition to miRNA21 and miRNA29A. The outcomes confirmed that nobiletin- loaded composite PEVs is an efficient delivery system combating skin cancer.


Assuntos
Antracenos/efeitos adversos , Antineoplásicos Fitogênicos/administração & dosagem , Carcinoma de Células Escamosas/tratamento farmacológico , Flavonas/administração & dosagem , MicroRNAs/genética , Piperidinas/efeitos adversos , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Portadores de Fármacos/química , Composição de Medicamentos , Flavonas/química , Flavonas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Tamanho da Partícula , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Eur J Pharm Biopharm ; 167: 9-37, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34271117

RESUMO

Hepatocellular carcinoma (HCC) is considered a serious malignancy which affects a large number of people worldwide. Despite the presence of some diagnostic techniques for HCC, the fact that its symptoms somehow overlap with other diseases causes it to be diagnosed at a late stage, hence negatively affecting the prognosis of the disease. The currently available treatment strategies have many shortcomings such as high cost, induction of serious side effects as well as multiple drug resistance, hence resulting in therapeutic failure. Accordingly, nanoformulations have been developed in order to overcome the clinical challenges, enhance the therapeutic efficacy, and elicit chemotherapy tailor-ability. Hybrid nanoparticulate carriers in particular, which are composed of two or more drug vehicles with different physicochemical characteristics combined together in one system, have been recently reported to advance nanotechnology-based therapies. Therefore, this review sheds the light on HCC, and the role of nanotechnology and hybrid nanoparticulate carriers as well as the latest developments in the use of conventional nanoparticles in combating this disease.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/patologia , Portadores de Fármacos/química , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Hepáticas/patologia , Nanopartículas , Nanotecnologia/métodos , Prognóstico
19.
Expert Opin Drug Deliv ; 18(1): 139-150, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33119413

RESUMO

Background: Bergamot oil (BO) is a photosensitizer that can be used for photodynamic therapy (PDT) of dermatological diseases such as vitiligo. Being an oil, it can be integrated within the lipidic matrix of nanostructured lipid carriers (NLCs) as the liquid lipid constituent, hence exhibiting a dual role. Research design and methods: NLCs were prepared with different emulsifiers and coemulsifiers, and the effect of the preparation method and formulation variables on the NLCs' size was elucidated. The prepared NLCs were further characterized for their in vitro release, viscosity, thermal behavior, and in vitro photostability. Furthermore, a preclinical photodynamic study on animal skin was conducted, followed by clinical experimentation on patients with vitiligo. Results: Results showed that BO was successfully incorporated within the NLCs. The selected NLCs formulation was in the nanometer range with a gel consistency, and it provided sustained release of BO for 24 h. NLCs improved the photostability and photodynamic properties of BO, and displayed promising preclinical and clinical results for the topical PDT of vitiligo. Expert Opinion: BO containing NLCs was proven to be promising means for PDT of vitiligo, and can be further explored in other dermatological diseases.


Assuntos
Nanoestruturas , Vitiligo , Animais , Portadores de Fármacos , Humanos , Lipídeos , Tamanho da Partícula , Fármacos Fotossensibilizantes , Óleos de Plantas , Vitiligo/tratamento farmacológico
20.
Sci Rep ; 10(1): 10987, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620860

RESUMO

The biggest challenge in colorectal cancer therapy is to avoid intestinal drug absorption before reaching the colon, while focusing on tumor specific delivery with high local concentration and minimal toxicity. In our work, thymoquinone (TQ)-loaded polymeric nanocapsules were prepared using the nanoprecipitation technique using Eudragit S100 as polymeric shell. Conjugation of anisamide as a targeting ligand for sigma receptors overexpressed by colon cancer cells to Eudragit S100 was carried out via carbodiimide coupling reaction, and was confirmed by thin layer chromatography and 1H-NMR. TQ nanocapsules were characterized for particle size, surface morphology, zeta potential, entrapment efficiency % (EE%), in vitro drug release and physical stability. A cytotoxicity study on three colon cancer cell lines (HT-29, HCT-116, Caco-2) was performed. Results revealed that the polymeric nanocapsules were successfully prepared, and the in vitro characterization showed a suitable size, zeta potential, EE% and physical stability. TQ exhibited a delayed release pattern from the nanocapsules in vitro. Anisamide-targeted TQ nanocapsules showed higher cytotoxicity against HT-29 cells overexpressing sigma receptors compared to their non-targeted counterparts and free TQ after incubation for 48 h, hence delineating anisamide as a promising ligand for active colon cancer targeting.


Assuntos
Benzamidas/química , Benzoquinonas/farmacologia , Neoplasias do Colo/metabolismo , Receptores sigma/metabolismo , Benzoquinonas/química , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Preparações de Ação Retardada , Células HCT116 , Células HT29 , Humanos , Nanocápsulas , Tamanho da Partícula , Ácidos Polimetacrílicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA